Imaging Concepts: Self Calibration

Juan M. Usón (NRAO) 12/06/06

Intensidad

Cuanta luz hace falta

para que dejes de tropezarte con el miedo

de Rodrigo Troncoso

Intensity

How much light do you need

to stop meeting your fear

by Rodrigo Troncoso

Imaging concepts

Radio interferometers are linear devices

Imaging: Estimation of true sky brightness from the observed visibilities Imaging is a non-linear process

 Imaging: Fourier inversion of the visibilities
 Weighting modifies the point-spread function and the noise characteristics (SNR)

Deconvolution: Correcting for "missed" visibilities
 A number of methods lead to somewhat different results

 ③ Self-calibration: Correcting the visibilities to sharpen the image Improve on calibration (SNR permitting)

Example: Self-calibration of a VLA snapshot

Initial image

Final image

Calibration equation

• Fundamental calibration equation

 $V_{ij}(t) = g_i(t)g_j^*(t)V^{true}(t) + \mathcal{E}_{ij}(t)$

 $V_{ij}(t)$ Visibility measured between antennas i and j $g_i(t)$ Complex gain of antenna i $V^{true}(t)$ True visibility $\mathcal{E}_{ij}(t)$ Additive noise

Calibration using a point source

• Calibration equation becomes

 $V_{ij}(t) = g_i(t)g_j^*(t)S + \mathcal{E}_{ij}(t)$

where S is the flux density of the source

- Solve for antenna gains via least squares algorithm
- Works well lots of redundancy
 - N-1 baselines contribute to gain estimate for any given antenna

Why is the initial calibration insufficient?

- The complex gains usually have been derived from an observation of a calibration source before/after the target source.
- The initial gain calibration is insufficient because:
 - Gains were derived at a different time
 - Troposphere and ionosphere are variable
 - Electronics may be unstable
 - Gains were derived for a different direction
 - Troposphere and ionosphere are not uniform

Sensitivity (SNR) and frequency of the calibration might be insufficient

What happens in the Troposphere?

- Clouds contain water vapor
- Index of refraction differs from "dry" air
- Variety of moving spatial structures

Movie of point source at 22GHz

Calibration using a model of a complex source

• We do not need a point source!

$$V_{ij}(t) = g_i(t)g_j^*(t)V_{ij}^{\text{model}} + \mathcal{E}_{ij}(t)$$

Redundancy means that errors in the model will average

Calibration using estimated antenna gains

• Correct for estimated gains:

$$V_{ij}^{\text{cal}}(t) = \left(g_i(t)g_j^*(t)\right)^{-1}V_{ij}$$

• Can smooth or interpolate gains if desired

Relationship to point source calibration

• Made a fake point source by dividing by model visibilities

$$X_{ij}(t) = g_i(t)g_j^*(t) + \varepsilon_{ij}'(t)$$

where:

$$X_{ij}(t) = \frac{V_{ij}(t)}{V_{ij}^{\text{model}}}$$

and $\mathcal{E}'_{ij}(t)$ is a modified noise term

Why does self-calibration work?

 Self-calibration preserves the *Closure Phase* which is a good observable even in the presence of antenna-based phase errors

$$\begin{split} \Phi_{ijk} &= \theta_{ij} + \theta_{jk} + \theta_{ki} \\ &= \theta_{ij}^{\text{true}} + \left(\phi_i - \phi_j\right) + \theta_{jk}^{\text{true}} + \left(\phi_j - \phi_k\right) + \theta_{ki}^{\text{true}} + \left(\phi_k - \phi_i\right) \\ &= \theta_{ij}^{\text{true}} + \theta_{jk}^{\text{true}} + \theta_{ki}^{\text{true}} \end{split}$$

SMA closure phase measurements at 682GHz

Advantages and disadvantages of self-calibration

Advantages

- Gains are derived for correct time, not by interpolation
- Gains are derived for correct direction on celestial sphere
- Solution is fairly robust if there are many baselines
- Disadvantages
 - Requires a sufficiently bright source
 - Introduces more degrees of freedom into the imaging so the results might not be robust and stable

When to and when not to self-calibrate

- Calibration errors may be present if one or both of the following are true:
 - The background noise is considerably higher than expected
 - There are convolutional artifacts around objects, especially point sources
- Don't bother self-calibrating if these signatures are not present
- Don't confuse calibration errors with effects of poor Fourier plane sampling such as:
 - Low spatial frequency errors due to lack of short spacings
 - Multiplicative fringes (due to deconvolution errors)
 - Deconvolution errors around moderately resolved sources

Self-calibration procedure

- Create an initial source model, typically from an initial image (or else a point source)
 - Use full resolution information from the clean components or MEM image NOT the restored image
- Find antenna gains
 - Using least squares fit to visibility data
- Apply gains to correct the observed data
- Create a new model from the corrected data
 - Using for example Clean or Maximum Entropy
- Go to (2), unless current model is satisfactory

Choices in self-calibration

- Initial model?
 - Point source often works well
 - Clean components from initial image
 - Do not clean too deeply!
 - Simple model-fitting in (u,v) plane
 - Self-calibrate phases or amplitudes?
 - Usually phases first
 - Phase errors cause anti-symmetric structures in images
 - For VLA and VLBA observations, amplitude errors tend to be relatively unimportant at dynamic ranges < 1000

More choices...

- Which baselines?
 - For a simple source, all baselines can be used
 - For a complex source, with structure on various scales, start with a model that includes the most compact components, and use only the longer baselines
- What solution interval should be used?
 - Generally speaking, use the shortest solution interval that gives "sufficient" signal/noise ratio (SNR)
 - If solution interval is too long, data will lose coherence
 - Solutions will not track the atmosphere optimally

Sensitivity limit

- Can self-calibrate if SNR on most baselines is greater than one
- For a point source, the error in the gain solution is

Phase only

$$\sigma_g = \frac{1}{\sqrt{N-2}} \frac{\sigma_v}{S}$$

Amplitude and phase
 $\sigma_g = \frac{1}{\sqrt{N-3}} \frac{\sigma_v}{S}$

- where: σ_v noise per visibility sampleandNnumber of antennas
- If error in gain is much less than 1, then the noise in the final image will be close to theoretical
 - Actually, it can be a bit lower than theoretical!

You can self-calibrate on weak sources!

- For the VLA at 8 GHz, the noise in 10 seconds for a single 50
 MHz IF is about 13 mJy on 1 baseline
 - Average 4 IFs (2 RR and 2 LL) for 60 seconds to decrease this by (4 * 60/10)^{1/2} to 2.7 mJy
 - If you have a source of flux density about 5 mJy, you can get a very good self-cal solution if you set the SNR threshold to 1.5. For 5 min, 1.2 mJy gives SNR = 1

Difficult example: VLA Snapshot, 8 GHz, B Array

- LINER galaxy NGC5322
- Data taken in October 1995
- Poorly designed observation
 - One calibrator in 15 minutes
- Can self-cal help?

Initial NGC 5322 Imaging

First pass

Used 4 (merged) clean components in model

10-sec solutions, no averaging, SNR > 5
 CALIB1: Found 3238 good solutions
 CALIB1: Failed on 2437 solutions
 CALIB1: 2473 solutions had insufficient data

30-sec solutions, no averaging, SNR > 5
 CALIB1: Found 2554 good solutions
 CALIB1: Failed on 109 solutions
 CALIB1: 125 solutions had insufficient data

30-sec solutions, average all IFs, SNR > 2
 CALIB1: Found 2788 good solutions

Phase Solutions from 1st Self-Cal

- Reference antenna has zero phase correction
 - No absolute position information!
 - Astrometry is hard
 - Corrections up to 150° in 14 minutes
- Typical coherence time is a few minutes

Image after first pass

Phase Solutions from 2nd Self-Cal

Used 3 components

- Corrections are reduced to 40° in 14 minutes
- Observation now quasi-coherent
- Next: shorten solution interval to follow troposphere even better

Image after 2nd Self-Calibration

Result after second self-calibration

- Image noise is now 47 microJy/beam
 - Theoretical noise in 10 minutes is 45 microJy/beam for natural weighting
 - For 14 minutes, reduce by $(1.4)^{1/2}$ to 38 microJy/beam
 - For robust=0, increase by 1.19, back to 45 microJy/beam
 - Image residuals look "noise-like"
 - Expect little improvement from further self-calibration
 - Dynamic range is 14.1/0.047 = 300
 - Amplitude errors typically come in at dynamic range ~ 1000
- Concern: Source "jet" is in direction of sidelobes

Phase Solutions from 3rd Self-Cal

- 11-component model used
- 10-second solution intervals
- Corrections look noise-dominated
- Expect little improvement in resulting image

Image Comparison

Easy example

- 8.4GHz observations of Cygnus A
- VLA C configuration
- Deconvolved using multi-scale clean

Image without self-calibration

- Phase calibration using nearby source observed every 20 minutes
- Peak ~ 22Jy
- Display shows -0.05Jy to 0.5Jy

After 1 phase-only self-calibration

• Phase solution every 10s

After 1 amplitude and phase calibrations

After 2 amplitude and phase calibrations

After 3 amplitude and phase calibrations

After 4 amplitude and phase calibrations

Summary of Cygnus A example

		Entire image			Off source	
	Max	Minimum	RMS	Max	Minimum	RMS
No selfcalibration	22.564	-0.179	0.409	0.072	-0.116	0.036
Phase only	22.586	-0.133	0.410	0.035	-0.035	0.013
1 Amp, Phase	22.976	-0.073	0.416	0.026	-0.033	0.012
2 Amp, Phase	22.912	-0.064	0.416	0.023	-0.033	0.012
3 Amp, Phase	22.887	-0.059	0.415	0.023	-0.033	0.012
4 Amp, Phase	22.870	-0.058	0.415	0.023	-0.032	0.012

- ~ Factor of three reduction in off-source error levels
- Peak increases slightly as array phases up
- Off source noise is less structured
 - Still not noise limited we don't know why. Perhaps the (u,v) coverage is insufficient for the complexity of the source?

Final image showing emission > 3σ

How well does it work?

- Can be unstable for complex sources and poor Fourier plane coverage
 - VLA snapshots and VLBA observations
- Quite stable for well sampled VLA observations and appropriately complex sources
- Standard step in most non-detection experiments
- Bad idea for detection experiments
 - Will manufacture source from noise
 - Use in-beam calibration for detection experiments

Recommendations

- Edit your data carefully before self-calibration --remove corrupt data!
- Expect to self-calibrate most non-detection experiments (SNR \geq 60)
- For VLA observations, expect to see convergence in 3 5 iterations
- Monitor off-source noise, peak brightness to determine convergence
- Few antennas (VLBI) or poor (u,v) coverage can require many more iterations of self-calibration
 - Be careful with the initial model
 - Don't go too deep into your clean components!
 - If desperate, try a model from a different configuration or a different band
 - Experiment with different solution intervals
 - Shorter intervals follow the atmosphere better
 - Don't be too afraid to accept low SNR in the solutions, statistics will help!

Acknowledgements and references

Acknowledgements:

Developed by Tim Cornwell, Ed Fomalont and Jim Ulvestad.

References:

Interferometry and Synthesis in Radio Astronomy (2nd Edition) by A. R. Thompson, J. M. Moran & G. W. Swenson, Wiley (2001)

Synthesis Imaging in Radio Astronomy II. Eds. G. B. Taylor, C. L. Carilli & R. A. Perley, ASP Conference Series vol. 180 (1989)

Lectures of the 10th Synthesis Imaging Summer School (2006): http://www.aoc.nrao.edu/events/synthesis/2006/lectures/

Poema XX.

Puedo escribir los versos más tristes esta noche. Escribir, por ejemplo: "La noche está estrellada, y tiritan, azules, los astros a lo lejos."

> (de "20 poemas de amor y una cancion desesperada" de Pablo Neruda)

Poem XX.

Tonight I can write the saddest lines. Write, for example, "The night is starry and the blue stars shiver in the distance."

> (from "20 love poems and a desperate song" by Pablo Neruda)